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Abstract. In this paper we describe a polynomial-time algorithm for the following
problem: given: a planar graph G embedded in R?, a subset {I,, ..., I} of the faces of
G, and paths Cy, ..., C, in G, with endpoints on the boundary of I, U --- U I; find:
pairwise disjoint simple paths P,,..., P, in G so that, for each i=1,...,k P; is
homotopic to C; in the space RZ\(I; U --- U I ).

Moreover, we prove a theorem characterizing the existence of a solution to this
problem. Finally, we extend the algorithm to disjoint homotopic trees. As a corollary
we derive that, for each fixed p, there exists a polynomial-time algorithm for the
problem: given: a planar graph G embedded in R? and pairwise disjoint sets
Wi, ..., W, of vertices, which can be covered by the boundaries of at most p faces of G;
find: pairwise vertex-disjoint subtrees Ty, ..., T, of G where T; covers W;(i=1,..., k).

1. Introduction

In this paper we describe a polynomial-time algorithm for the following disjoint
homotopic paths problem:

given: a planar graph G embedded in the plane R?;
a subset I, ..., I, of the faces of G (including the unbounded
face);
paths C,,...,C, in G, each with endpoints on the boundary  (1.1)
of Iy -Vl

find: pairwise disjoint simple paths Py, ..., P, in G so that, for each
i=1,...,k P,ishomotopic to C; in the space R*\(I, U -~ U I,).

We explain the terminology used here. By embedding we mean embedding without
intersecting edges and with piecewise linear edges. We identify G with its image in
R2. We consider edges as open curves (i.., without endpoints) and faces as open
subsets of R2.
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Two curves C, C: [0,1]>R*\({;u---Ul,) are called homotopic in
R*\(,; u---uUl,) (in notation: C~ C) if there exists a continuous function
®: [0, 1] x [0, 1] » R*\({, u--- U I,) so that

0, x) =C(x), O(Lx)=Cx), Dx,0=C0), @ 1)=C1) (1.2

for each x € [0, 1]. (It implies that C(0) = C(0) and C(1) = C(1).) In this paper, by
just homotopic we mean homotopic in R*\(I; U --- U I o)

A path is a sequence (vg, €4, Uy, ..., &g, U4) Of not necessarily distinct vertices and
edges, so that e;connectsv;_; and v;(j = 1, ..., d). Itis simple if vy, vy, ..., v, are all
distinct. Vertices v, and v, are called the endpoints of the paths. By identifying paths
in G with curves in R?, homotopy extends to paths in G.

Thus we prove (in Section 3):

Theorem 1. The disjoint homotopic paths problem (1.1) is solvable in polynomial
time.

The algorithm also yields the basis of a proof of the following theorem (Section
5) characterizing the existence of a solution to the disjoint homotopic paths
problem (1.1) by means of “cut conditions” (conjectured by L. Lovasz and P. D.
Seymour):

Theorem 2. Problem (1.1) has a solution if and only if:

(i) there exist pairwise disjoint simple curves C,,...,C, in
R*\(I,u -+ UI,) so that C; is homotopic to C; (i =1, ..., k);

(ii) for each curve D:[0,1]—>R*\(I,v---ul,) with D), D(l)e
bd(I, U --- U I,) we have

k
cr(G, D) > Z mincr(C;, D); (1.3)

i=1

(ii1) for each doubly odd closed curve D: S, - R*\(I, U --- U I ») we have

k
cr(G, D) > > mincr(C;, D).

i=1

Here bd denotes boundary. For curves C, D: [0, 1] » R\, U --- U I ») we define

cr(G, D)=|{y € [0, 11| D(y) € G},
cr(C, D)=[{(x,y) € [0, 1] x [0, 1]|C(x) = D(y)}, (1.4)
mincr(C, D)= min{c(C, B)|C ~ C,D ~ D).

(We take ¢(G, D):= 1 if D is a constant function with D(0) e G.)
A closed curve is a continuous function D: §; — R? (where S, denotes the unit
circle in C). Two closed curves D,D:S, - R\, u--- Ul ») are called freely
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homotopic in R*\(I, U--- U I,), or just homotopic (in notation: D ~ D), if there
exists a continuous function @: [0, 1] x S; - R*\(I; U --- U I) so that

®0,z) = D(z), @(,z) = D(z) 1.5)

for all zeS,. (So there is no fixed point.) Again we denote (if C:[0,1]—
R\, u--- U I,) is a curve)

cr(G, D)= |{z € 5,|D(z) € G},
cr(C, D)= {(x, z) € [0, 1] x §;|C(x) = D(2)}, (1.6)
mincr(C, D) := min{cr(C, D)|C ~ C, D ~ D}.

If D', D":S, — R? are closed curves with D'(1) = D"(1), then the concatenation
D’ - D" (or just D'D") is the closed curve given by

D' - D"(z):= D'(z?) if Imz>0,
= D"(z?) if Imz<O. .7

Call a point p a fixed point of a curve C if each curve homotopic to C traverses p. (In
particular, the endpoints of C are fixed points of C.) A closed curve D is called
doubly odd if:

(i) D does not traverse any fixed point of any Cy, ..., Ci;
(ii) D = D'-D” for some closed curves D', D" with D'(1) = D"(1) ¢ G so
that

k
cr(G, D) + Y. kr(C;, D) is odd
&

12

and (1.83)

k
cr(G, D) + Y, ki(C;, D) is odd.
i=1

Here kr(C, D) denotes the number of crossings of C and D (see Fig. 1).

D C C D
crossing touching

Fig. 1
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Fig. 2. Wavy curves represent Cy, ..., C;o and the dashed curve represents the doubly odd closed
curve D. Now cr(G, D) + 3 12, ke(C;, D) = 6 + 5 = 11and er(G, D) + Y19, kr(C;, D"y = 7 + 8 = 15,
whereas cr(G, D) = 13 = 3 !, miner(C;, D). So condition (1.3(iii)) is not satisfied, and hence (1.1) has
no solution.

To clarify condition (1.3), we give a proof of necessity (see Fig. 2).

Proof of necessity of condition (1.3). Suppose problem (1.1) Eas a solution
Py, ..., P,. Then condition (1.3(i)) is satisfied as we can take C,:=P, for i =
1,..., k. Condition (1.3(ii)) follows from

k k
cr(G,D) = ) cr(P;, D) > Y mincr(P;, D) =
i i=1

i=1

k
mincr(C;, D) (1.9)
i=1

13

(the first inequality follows from the fact that the P; are simple and disjoint).
To see condition (1.3(iii)), note that

k k
(G, D)= Y (P, D)= Y ki(P, D)
i i=1

i=1 =

and (1.10)

k k
cr(G,D") > ¥ cr(P;, D") > > kr(P;, D").

i=1 i=1

Moreover, since the parity of kr(-, -) is invariant under homotopy, we have by

(1.8(ii))

k k

(G, D) # Y kiC, D) = ¥ ke(P, D) (mod 2),
i=1 i=

. . (1.11)

cr(G, D") # Z kr(C,,D") = Z kr(P;, D) (mod 2).
i=1 i=1
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So we derive the following strict inequalities from (1.10):

k k
(G, D)> Y kr(P, DY) and  cor(G,D")> ¥ ke(P,D"). (1.12)
i=1 i=1

13 13

Concluding,

k
cK(G, D) = cr(G, D') + ct(G, D"y > ¥ (kr(P,, D') + kx(P,, D"))
= (1.13)
k k k
= Y kr(P, D)= ¥ mincr(P,, D)= Y, mincr(C;, D).
i=1 = i=1

i=1

(The last inequality follows from the fact that D does not traverse any fixed point of
any C,, so that any touching of D and P, can be removed.) Therefore we have the
strict inequality in (1.3(iii)). O

In Section 6 we describe a polynomial-time algorithm for the following disjoint
homotopic trees problem, generalizing the disjoint homotopic paths problem (1.1):

given: a planar graph G embedded in R?;

asubset,, ..., I, of the faces of G (including the unbounded face);
paths C,y,..., Cy,y ..., Cyys..., Gy, in G, each with endpoints
on the boundary of I, u--- U I, so that, for each i =1, .k,
Ci» ..., Cy, have the same beginning vertex;

find: pairwise disjoint subtrees Tj,..., T, of G so that, for each
i=1,...,kandj=1,...,t, T contains a path homotopic to C;;
in R\(I, u-ul)).

Theorem 3. The disjoint homotopic trees problem (1.14) is solvable in polynomial
time.

Theorem 3 generalizes Theorem 1, sinceift, = --- = t;, = 1, then problem (1.14)
reduces to problem (1.1). However, for the sake of exposition we first restrict
ourselves to studying problem (1.1). The algorithm for (1.14) arises from that for
(1.1) by some direct modifications.

We do not formulate a theorem characterizing the existence of a solution to
(1.14), analogous to Theorem 2, as we found only tedious inattractive conditions.
Obviously, the fact that (1.14) is solvable in polynomial time implies that it has a
“good characterization” (i.e., belongs to NP n co-NP).

Finally, in Section 7 we consider the disjoint trees problem:

given: a graph G;
subsets W,, ..., W, of V(G);
find: pairwise disjoint subtrees T;,..., Ty of G so that W, < V(T) for
i=1,...,k

(1.15)
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This problem is NP-complete. Robertson and Seymour showed that, for fixed
|W, U---U W, problem (1.15) is solvable in polynomial time. We derive from
Theorem 3 that if G is planar this can be extended to:

Theorem 4. For each fixed p there exists a polynomial-time algorithm for the
disjoint trees problem (1.15) when G is planar and W, U --- U W, can be covered by
the boundaries of p faces of G.

The reduction to Theorem 3 is based on enumerating homotopy classes of trees,
taking the p faces as “holes.”

Motivation for studying problems (1.1), (1.14), and (1.15) comes from two
different sources. First, in their series of papers “Graph Minors,” Robertson and
Seymour study problem (1.1) for the case where p = 1 or 2 [6]. Moreover, they
study a variant of problem (1.14) for graphs densely enough embedded on a
compact surface [7], [8].

A second source of motivation is the design of very large-scale integrated (VLSI)
circuits, where it is wished to interconnect sets of pins by disjoint sets of wires.
Pinter [5] described a topological model for solving so-called “river-routing”
problems. In consequence, Cole and Siegel [1] and Leiserson and Maley [3]
proved the theorem above and gave a polynomial-time algorithm, respectively, for
problem (1.1) in case G is part of the rectangular grid on R2, provided that each
face not surrounded by exactly four edges belongs to {I,..., I} (then (1.3(iii)) is
superfluous).

The algorithm for (1.1) is purely combinatorial. In [2] we described a polyno-
mial-time algorithm for (1.1) based on the ellipsoid method (first a fractional
solution to (1.1) is found with the ellipsoid method, next this fractional solution is
“uncrossed,” from which a solution to (1.1) is derived). The present algorithm
extends to disjoint trees.

Another related result was published in [9], showing the necessity and suffi-
ciency of conditions analogous to (1.3) for the existence of circuits of prescribed
homotopy in a graph embedded on a compact surface. With some effort we may
derive from this Theorem 2 above, by transforming the space R*\(I, U --- U I,) to
a compact closed surface, by adding some “handles” between the “holes”
I,,...,1,, and by extending the graph and the curves over these handles.

Note 1.1.  Analysis of our method would yield a running time bound of order
O(n* log? n), where n is the number of vertices -+ edges of G, added with the lengths
of the paths in the input. We do not however derive this bound. In fact, we
conjecture that a sharpening of our methods gives a running time of order
O(n? log? n).

Note 1.2.  To apply the algorithm, it is not necessary to describe the embedding of
G in R It suffices to specify the vertices, edges, and faces of G abstractly, and to
give with each vertex and with each face the edges incident with it in clockwise
orientation.
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Fig. 3

Note 1.3. If we would delete from the definition of “double odd,” condition
(1.8(1)) that D should not traverse any fixed point of any C;, condition (1.3(iii))
would not be a necessary condition. This is shown by the example in Fig. 3.

The graph in Fig. 3 has four vertices: ¢, u, v, w, with a loop attached at each of
them, edges connecting ¢ and u, and v and w, and two parallel edges connecting u
and v. Let C, be the path from ¢ to w following edges e, €', ¢". So problem (1.1) has a
solution (taking k = 1). Let D be the closed curve indicated by the dashed curve. D
traverses the fixed points u and v of C,. We easily check that D satisfies (1.8(ii)), but
not the strict inequality in (1.3(iii)) (since c¢r(G, D) = 4 = mincr(C,, D)).

2. The Universal Covering Space and Shortest Homotopic Paths

Before describing our method in Section 3, in this section we first discuss briefly the
concept of universal covering space, and we describe a polynomial-time algorithm
for finding a shortest path of given homotopy. One consequence of this algorithm is
that we can check in polynomial time whether two given paths are homotopic. For
background literature on the universal covering space, see Massey [4].

The universal covering space U of R*\(I; u---uUl,) can be defined set-
theoretically as follows. Choose a point ue R*\(I; U--- U l,). The underlying
point set of U is the set of all homotopy classes of curves startinginu. Aset T < U
is open if and only if, for each u € T, say u € hom(u, w), there exists a neighborhood
N of win R*\(I, U --- U I,) so that if Pis a curve contained in N starting in w, then
wu-{P>e T. [Here hom(u, w) denotes the collection of all homotopy classes of
curves from u to w, and (P} denotes the homotopy class containing P.]

It is not difficult to see that the universal covering space is independent (up to
homeomorphism) of the choice of u. With the universal covering space U a
projection function n: U » R*\(I, U --- U I ) is given by n(x) == w if u € hom(u, w).

There is an alternative, combinatorial way of describing U. We can “cut open”
R*\(I, u--- U I,) along p — 1 pairwise noncrossing simple curves, connecting the
“holes” I, ..., I,, in such a way that we obtain a simply connected region R, e.g.,
Fig. 4 becomes Fig. 5. We can deform R to a disk as in Fig. 6. If two of the I; touch
each other, we can obtain a region with cut points.
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Fig. 4

Fig. 5
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We now take infinitely many copies of R, and glue them together along the cuts,
in such a way that we obtain a simply connected space (see Fig. 7). This gives us the
universal covering space U of R?\(I; u --- u I,), with obvious projection function
U - RN, u---UI,).

The inverse image G':=7"'[G] of G is an infinite graph, embedded in U
(assuming p > 2 here, the case p = 1 being trivial). In fact, G’ is planar, and U can
be identified with R?\ | 5. & F, where & is the collection of unbounded faces of G'
(assuming G to be connected).

It is a fundamental property of the universal covering space that, for each curve
C:[0,1] - R*\(I, u---u I,) and each choice of ven™!(C(0)), there exists a
unique curve C’: [0, 1] — U satisfying 1o C' = C and C’(0) = v. Curve C' is called 2
lifting of C to U. Two curves C, C: [0, 1] » R*\(I; v --- U I,) are homotopic if and
only if some lifting of C to U has the same endpoints as some lifting of CtoU.A
point ue R*\(I; u--- U I,) is a fixed point of curve C-if and only if, for some
w' € 1~ (u) and some lifting C’ of C to U, each curve in U connecting C'(0) and
C'(1) traverses u'.
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We now turn to the shortest homotopic path problem:

given: a planar graph G = (V, E) embedded in R?;
a subset {I,,...,I,} of the faces of G (including the un-
bounded face);
a path P in G, (2.1
a “length” function [t E— 7, ;

find: a path P in G homotopic to P in R*\(/; u-*- U I,) minimizing

length (P)

Here by length(P) we mean, if B = (vy, ey, vy, ..., €4, V),

d
length(P)= Y Ie)). (2.2)
i=1
We do not require that P is simple in (2.1).

To solve (2.1), consider a lifting P’ of P to U. So P’ is a path in G, say from u to
w. Then, clearly, if Q is a shortest pathin G’ from u to w, then its projection n- Qis a
valid output for (2.1). (Taking the obvious length function on the edges of G'))

Hence, the shortest homotopic path problem in G can be reduced to the shortest
(nonhomotopic) path problem in G'. This would give us an algorithm if G’ were not
an infinite graph. However, it is clearly not necessary to consider G’ completely. In
fact, it suffices to consider a part of G’ of polynomially bounded size, which
implies that (2.1) is solvable in polynomial time.

To see this, we may assume that when cutting R2\(I, u---uU I ») open to obtain
the region R, we have done this along shortest paths in G. In fact, we can find
shortest paths Q,,..., @, in G, where Q; connects I; with I, so that Q,,...,Q are
pairwise edge-disjoint and do not have crossings. (They can be found as follows.
Choose vertices v,,...,v, incident with I,,..., I,, respectively. With Dijkstra’s
algorithm, find a spanning tree T in G so that all simple path in 7 starting in v, are
shortest paths. Let Q; be the simple pathin T from v, tov; (forj = 2,..., p). Adding
parallel edges gives Q, ..., Q, as required.)

Now any lifting Q; of any Q; to U is a shortest path in G'. So there exists a
shortest path in G’ from u to w not crossing any Q; which does not cross P’. That is,
we have to.consider only that part of U consisting of copies of R traversed by P’
This gives us a subgraph G” of G’ of size polynomially bounded by the size of G and
the number of vertices in P'. For any shortest path Q in G” from u to w, the path

-~

P:=m7o(Q is a shortest path homotopic to P.

Proposition 1.  The shortest homotopic path problem is solvable in polynomial time.

Proof. See above. 0
A consequence is:

Proposition 2. It can be tested in polynomial time if two paths P and P in a planar
graph are homotopic in R*\(I, u--- U1 o) (Where 1., ..., 1, are faces).
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Proof. Paths P and P are homotopic if and only if the shortest path homotopic to
path P-P~! has length O (where P~! denotes the path reverse to P and taking
length I(e) = 1 for each edge e). O

There is also a polynomial-time algorithm for finding a shortest path not
homotopic to a given path. More generally, we have the following result. A
mapping of a graph G to a space S is a—not necessarily one-to-one
—continuous function from G to S. Call two paths in G homotopic if their
images in § are homotopic in S.

The shortest nonhomotopic path problem is:

given: a graph G = (V, E) mapped into a space S;

a path P in G, connecting, say, u and w;

a “length” function | E—~Z; (2.3)
find: a path Q in G from u to w, so that Q is not homotopic to P and

so that Q has minimum length.

Proposition 3. The shortest nonhomotopic path problem is solvable in polynomial
time, provided we can decide in polynomial time if any given path Q is homotopic to P.

[In fact, this last is the only thing we need to know about S and the mapping.]

Proof. First find for each vertex v of G a shortest path P, from u to v and a
shortest path P, from v to w. Consider the following collection of paths in G:

Puv : va (U € V)a (24)
P,-eP,, (e=w'e€E).
Select those paths Q from (2.4) which are not homotopic to P, and choose among
these one of minimum length. We claim that this Q is a valid output for (2.3).
To see this, let

R=(u=n0g, €1, V1,..-r €, Vg = W) 2.9)

be a minimum-length path not homotopic to P. We must show length(Q) <
length(R).

Choose the largest t so that P,, - (v;, €41, .., €4, V) is not homotopic to P. Such
a t exists, as R itself is not homotopic to P. If t = 4, then P,,, is not homotopic
to P. Moreover, P,, = P,,-P,,, occurs among (2.4), and hence length(Q) <
length(P,,,) < length(R).

If ¢ < d, by the maximality of ¢, path P, -+, - P,,.,, is not homotopic to path
P, P..., . Hence atleast one of them is not homotopicto P. So one of them has
length at least length(Q). On the other hand, each of them has length at most
length(R) (since the P,, and P,, are shortest paths). Therefore, length(Q) <
length(R). O
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3. The Method

We describe our method for solving the disjoint homotopic paths problem (1.1).
Let input G, I4,...,1,, Cy,...,C, be given. The algorithm finds P,,..., P, as
required, if conditions (1.3) are satisfied. It consists of four basic steps:

I. Uncrossing C,, ..., C,.
II. Constructing a system Ax < b of linear inequalities.
IILI. Solving Ax < b in integers.
IV. Shifting C,, ..., C, (using the integer solution of Ax < b).

In order to facilitate the description, we make the following assumptions:

(i) each edge of G is traversed at most once by the C;;
(ii) the endpoints of each C; have degree 1 in G;
(i) no edge traversed by any C,, except for the first and last edge of C;,

is incident with any face in {I,,...,I,}.

(3.1)

These conditions can be fulfilled by adding new vertices and (parallel) edges. It
follows from (3.1) that the endpoints of each C; are not traversed by any other
Cl gy Ck‘

I. Uncrossing Cy, ..., C,

This step modifies Cy,...,C, so that they do not have (self-)crossings or
null-homotopic parts. (A part is a subcurve.) Choose i, i’ € {1, ..., k} with i # i, and
let
Ci = (g, €1, 01, €5, Upyevvy €y Up)s

o e o €2 B o V) (32)
Ci = (U, €1, V1, €5, Usy ey €y Ury).
Consider a pair (j,j)with1 <j<m—1land 1 <j <m’' — 1. Call (j,j) a crossing
if v;= v}, and the edges e;, ¢}, e;,;, €y, occur in this order cyclically at v;,
clockwise or anticlockwise (see Fig. 8).

Now there is the following easy proposition:

Proposition 4.  If (1.3(i)) is satisfied and i # ¥, then for any crossing (j, j') of C; and
C;. there exists another crossing (h, h') of C; and C;. so that

part (vj, ..., v,) of C; is homotopic to part (v}, ..., vj) of Cy. 3.3)

or

Fig. 8
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[By part (vj,...,v,) of C; we mean (v;, €1y, Vjry,-.., 6, U) if j<h, and
(), €j5 V5 (5., €441, 0y) if j > h. Similarly for C;..]

Proof. If (j, ') is a crossing of C; and C;. there exist liftings
Ci= (0o, 81, U1y...s 8y, D) and  Cp = (T, &), Ty ern s s Uge) 3.4)

of C; and C; respectively to U so that 5; = 7 and ¢;, e‘;:, €;+1, €41 OCCUr in tllis
order cyclically at 7. By (1.3(i)) there exist C; ~ C;and C; ~ C; so that C;and C;
are disjoint. By considering liftings of C; and C; it follows that C; and C; have an

even number of crossings. Hence C; and C; must have a second crossing, say at
b, = Uy This implies (3.3). O

By Proposition 2 we can test in polynomial time if two paths are homotopic. So
if C; and C; have a crossing, we can find in polynomial time two distinct crossings
(,J') and (h, i) so that (3.3) holds. We now exchange parts (v;, ..., v,) of C; and
(Vs ..., vp) of Cpyeg, if j<handj < W, we reset

I N gy ’ ’ '

Cii= (Vg €15+ €1y U = U}, €y envs €y Dy = Uy €pieys oo vs €y V),
e {1 ’ / ’ R ’ ’ ’

Cii= (00, €1, . s €,V = U, €4y, eny €4y Dy = Upes €l gy en s €pyrs Uyt)-

This resetting reduces the total number of crossings of C; and C; (summing up over
all pairs i, i'). Hence after a polynomial number of such modifications we are in the
situation that no two distinct C;, C;. have crossings.

Throughout this uncrossing process we remove null-homotopic parts of any C;
(they can be recognized again by Proposition 2). Since each such removal strictly
decreases the total number of edges used by the C;, this again can be done in
polynomial time.

We still have to deal with self-crossings. A self-crossing of

Ci = (0g, €1, V15 -nnsCps Uyy) (3.5)
is a pair (Jj, j') with j # j' and v; = v; so that e, e;,, ;. ,, €; 4+, occur in this order

cyclically at v;, clockwise or anticlockwise (see Fig. 9). (It follows that if (j, /) is a
self-crossing, then (j',j) is also.) To remove self-crossings we can apply a similar

e, e, e, e.,
j 3’ 3 j'+1

3141 3+1 ' 341
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approach as above, although we should be more careful: there are problems'if we
want to exchange parts (v;, ..., v,) and (vj, ..., v,) of C; if they “overlap,” ie., if
they have at least one edge in common. The following proposition shows that we
can avoid this situation:

Proposition 5.  If(1.3(1)) is satisfied and (j, j') is a self-crossing of C; with j as small as
possible, then there exists another self-crossing (h, h’) of C; so that:

(i) parts (v;, ..., vy) and (vy, ..., vy) of C; are homotopic; (3.6)

(@) j<h<j<horj<h<h<j.

Proof. By deforming C; slightly, we may assume that C; has no “self-touchings:”
(To allow this deformation we can add a little “space” at fixed points of C;—this
does not invalidate the conclusion of Proposition 5.) By (1.3(i)), there exists a
simple curve C; ~ C;. Hence any two liftings of C; to the universal covering space U
are disjoint and simple. So any two liftings of C; to U have an even number of
crossings.

Since C; has no null-homotopic parts, each lifting of C;, to U is
simple. Let us assume without loss of generality that (j, j') is a self-crossing where
ej, ey, €41, €41 occur clockwise at v; = v; (so the first configuration in Fig. 9
applies). Consider a lifting

C: = (U;), efla vlla et e;rn v:'l) (3'7)

of C;. As (j, ) is a self-crossing, there exist liftings

” " " "t " nr

Ci = (vg, €}, v5,..., e, U and C!" = (vg, e, vl,....em vyn) (3.8)
of C; so that v} = v} and v} = v} and so that

U N " : "o__
€j, €y, €541, €54, Occur clockwise at v}, = v}

and 3.9)

ej, e, €., ej . occur clockwise at vy = vj.
(see Fig. 10).

Now Cjand C{ must have a second crossing. Choose the smallest 4 so that h s j
and v}, = vy, gives a crossing of C; and C/ for some /'. By the minimality of j we
know h > j. Note that by the symmetry of the universal covering space, v, = v}
gives a crossing of C; and C;". We consider two cases.

Case 1: W' 2 j. Since, by the minimality of j, Ci cannot cross Cy at vg, ..., v}_; and
cannot cross C; at vy, ..., v;_, it follows that C}’ crosses C! in one of Vigtseees Uf.
Hence h < j/, and we have (3.6).

Case 2: 1" <j.If h < I we have (3.6), so assume h > K. We show that this is not
possible.
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Since h > I, we have the situation shown in Fig. 11. Here parts (v}, ..., v;) of C;
and (vy, ..., v}) of CY might have more than one crossing. We know however, by
the minimality of , that part (v, ..., v}) of C; does not intersect part (v, ..., v}) of
C{ (except at the endpoints). Hence they enclose a simply connected (closed) region
R. Similarly, parts (v],...,v;) of C{ and (vj,...,v}) of C{" enclose a simply
connected (closed) region R'. Moreover, by the symmetry of U, there exists a
continuous function ¢: R — R, bringing (v}, ..., v},) to (v}, ..., v;) and (vy, ..., v}
to (vy, ..., v}) and not having any fixed point.

Furthermore, there exists a continuous function y: U — R so that:

(i) if y € R, then Y(y) = y;
(i1) if y € R'\R, then y(y) belongs to the subcurve (v}, ..., v;) of Cj; (3.10)
(iii) if y belongs to subcurve (v}, ..., vy) of C{, then Y(y) = vj.

(This follows from the fact that C} divides U into two parts, and that R and R’ are
contained in one of these parts.)

Now consider the function ¥ -¢: R — R. Since R is simply connected, by
Brouwer’s fixed-point theorem there exists an x € R so that y(¢(x)) = x. Since ¢
has no fixed points, ¢(x) # x. Hence ¢(x) # y(o(x)). So by (3.10(i)) ¢(x) € R\R.

" i
c ci

=g "o [ v =v! A;f"
it V=V Vi~ Vh it m

Fig. 11

oLl
i
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Therefore, by (3.10(ii)), x = ¥(¢(x)) belongs to subcurve (v}, ..., v;) of Ci. So ¢(x)
belongs to subcurve (v}, ..., vy) of C;. This implies by (3.10(iii)) that x = y(¢(x)) =
vy, However, Y(o(vy,)) = ¥ (vy) = vy # v} O

Proposition 4 enables us to remove self-crossings. We choose a self-crossing
with j as small as possible. Then with Proposition 2 we can find in polynomial time
another self-crossing (h, #') satisfying (3.6), and we reset

Cir=(U0, ooy Uj = Djey ooy O = Upyee ey Uy = Uy, U = U, .o, 0,) (3.11)

if j < K. Similarly if j > W
After a polynomial number of such modifications we have that C,, ..., C, have
no (self-Jcrossings and no null-homotopic parts.

II. Constructing the System Ax < b of Linear Inequalities

For each vertex of G, each time it is traversed by some C;, we introduce a variable,
indicating how far we should shift C; in order to make C,,..., C, simple and
pairwise disjoint. Figure 12 gives an impression.

More precisely, let, foreachi=1,..., k,

Ci = (UiOa eila Uily ey eim,-a Uim;)‘ (312)

We introduce a variable x;; foreach i=1,...,kand j=1,...,m; — 1. We put a
number of linear constraints on the x;;in order to make sure that the shifted C; are
(1) homotopic to the original C;, (2) pairwise disjoint, and (3) simple. This divides
the constraints into Classes 1, 2, and 3. It turns out that the full constraint system
Ax < b has an integer solution if and only if problem (1.1) has a solution.

We use the following notation. Let i€ {1,...,k} and je {1,...,m; — 1}, and
consider v; ;_,, e;;, v;; as in Fig. 13. Then F; denotes the face incident with e;; on
the right-hand side when going from v; ;_, to v;;, and F;; denotes the face on the
left-hand side.

Two faces F, F’ are called freely adjacent at vertex v if v is incident both with F
and with F', and either F = F' or, when e;, ..., e, €., 1, ..., ¢, denote the edges
incident with v in cyclic order as in Fig. 14, then there is no curve among
Cy,..., Gy containing ...,e;, v, €j,... Of ...,e;, 0, €,... with 1 <i<s and
s+ 1 <j <t So roughly speaking, we can go from F to F’ traversing v without
crossing any Cy,...,C,. Note that at any vertex v, free adjacency forms an
equivalence relation on the faces incident with v. (If a face has multiple incidences
at v, we must be careful: each touch should be considered separately.)

To facilitate the construction of the system of inequalities, we define an auxiliary
graph H, with length function on the edges, as follows. The vertices of H are the
pairs (v, 4), where v is a vertex of G (not being one of the endpoints of C;, ..., C,)
and where A is an equivalence class of faces freely adjacent at v. If (v, ) and (w, p)
are vertices of H, there is an edge of length 1 connecting them if 1 and y have a face



Disjoint Homotopic Paths and Trees in a Planar Graph 543

===

g 0

Fig. 12. Here the heavy line indicates the initial path, and the dashed line indicates the shifted path. A
positive number t means shifting over a distance ¢ to the right, and a negative number —t means shifting
over a distance ¢ to the left (right and left with respect to the orientation of the initial path). For distance
between vertices v, v of G we take the minimum number of faces traversed by any curve connecting v
and v'.
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F¢{l,,...,1,} in common. In fact, we have an edge e, for each face F in
Ao p\{Iy, ..., 1,}. Moreover, for eachie {1,...,k} and j,j € {1,..., m; — 1} there
is an edge connecting (v;;, (F;>) and (v, (F})) of length

ijs

Vi,j,y =min(cr(G, D) — 1), (3.13)
D

where D ranges over all curves D: [0, 1] > R*\(I, u---u [ ») homotopic to part
(v3j, ..., v;y) of C;. (Here {F) denotes the equivalence class of F of free adjacency at
the appropriate vertex.) Similarly, there is an edge connecting (v;;{F;>) and
(viy, {Fi7)) of length y; ; ;.. Note that by Proposition 1, y; ; » can be calculated in
polynomial time.

There exist two “canonical” mappings ¢ and ¥ of H in R*\(I, u---u I - (A
mapping is a continuous function, not necessarily one-to-one.) First, let

ev, 2):= (v, 1):=v (3.14)

for each vertex (v, A) of H. The image, under ¢ as well as under ¥, of each edge ey is
a line segment contained in F connecting v and w. For the other edges, the images
under ¢ and under  generally are different: the edge connecting (v;;, {F};>) and
(v, (F>) has as its p-image a curve D attaining the minimum in (3.13). Its
Y-image is a curve traversing

+ + +
Uijs Fi‘j+15 Vi j+1> Fi,j+27 ey F.'j'a Dijs (3.15)

respectively (assuming without loss of generality j <j). So the i-image is,
informally speaking, parallel to part (v;;,...,v;;) of C; and does not cross any
Cy,...,C, (since F; and Fj,, are freely adjacent at v,). Similarly, the images of
the edges connecting (v;;, {F;; ») and (v;;,, (F;;) are given.

Each path P in H gives two curves ¢ o P and y - P, which are homotopic to each
other. So we can speak of the homotopy of a path P in H.

We now describe the three classes of inequalities.
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Class 1. This class of inequalities is meant to avoid that any C; is shifted over any
of the faces I,,...,I, (as we shall see below). Thus, for each i=1,...,k and
j=1,....,m; — 1, we require:

(@) x;; < minp length(P), (3.16)
(B) —x;; < min, length(P). '
Here the minimum in () ranges over all paths P in H from (v;;, (F;>) to any (w, 1)
so that 1 contains a face in {I,, ..., I,}. Similarly, the minimum in () ranges over
all paths P in H from (v;;, {Fj;)) to any (w,A) so that A contains a face in
{I,....1,}.

It is not difficult to see that such paths always exist, as (v, <F;;)) and
(v;1, <F;>) are connected by an edge of H, and as (F;> contains a face in
{I,...,1,}. So the right-hand sides of (3.16) are finite. They can be calculated in
polynomial time.

Note 3.1. The right-hand side of (3.16(a)) can be described equivalently as

min(cr(G, D) — 1), (3.17)
D

where D ranges over all curves D for which there exists a curve @ ~ D from y;;to a
vertex w on bd(I, u--- U I,) so that:

(i) Q does not cross any C,..., Cy;
(i) Q starts via a face freely adjacent at v;; to Fy; (3.18)
(iii) Q ends via a face freely adjacent at w to some face in {I,, ..., I,}.

Here we say that Q starts via face F if Q[(0,¢)] < F for some ¢ > 0. Similarly,
Q ends via F if Q[(1 — ¢, 1)] < F for some ¢ > 0.

The fact that the right-hand side of (3.16(%)) is equal to (3.17) can be seen by
observing that each path P in the range of (3.16(x)) gives a curve D:= ¢ ¢ P in the
range of (3.17), with cr(G, D) — 1 = length(P). Conversely, for each curve D in the
range of (3.17) there exists a path P in the range of (3.16(x)) with length(P) <
cr(G, D) — 1.

A similar formula holds for the right-hand side of (3.16(f)).

Class 2. This class of inequalities must accomplish that two di.fferent C;and C;
do not intersect after shifting. Thus, for each i, i' = 1,...,k with i # i', and for
eachk=1,...,m;—landj =1,...,m; — 1, we require:

(o) x5+ xpjp < dist (v, <FiJJr'>)» (vips <FiTj’>)) -1,
B Xijj— Xpp & distg((vyj, <FiJ1r' ) (vijes CFepd) — 1, (3.19)
() —x;; — x;p < distyl((vy;, <Figd) (s (Fipm) —1,
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where dist, denotes the distance in H (with respect to tbe length fu'ncti.on given).
Again, the right-hand sides of (3.19) are easily computed in polynomial time—they

are allowed to be infinite.

Note 3.2. The right-hand side of (3.19(«)) can be described equivalently as

min(cr(G, D) — 2), (3.20)
D

where the minimum ranges over all curves D for which there exists a curve 0 ~ D

from v;; to v, not crossing any C,,..., Cy,sothat Q starts via a face freely adjacent
1, . . .

atv;to F % and ends via a face freely adjacent at v, ;, to F;.. Similarly for () and

o)

Class 3. The last class of inequalities must accomplish that each shifted C; is
simple. Thus, for each i=1,...,kand j,j = 1,...,m; — 1, we require:

(2) x;; + X; < minp length(P) — 1,

(B) xi; — x;j < minp length(P) — 1, (3.21)

() —x; — x; < minp length(P) — 1.
Here in (x) the minimum ranges over all paths P in H from (v, (F)) to
(vij, (Fi) which are not homotopic to part (v;, ..., v;;) of C;. Similarly for (f)
and (7). Again the right-hand sides of (3.21) can be infinite. If j = j' we obtain
bounds for +2x;;. The right-hand side of (3.21) can be calculated in polynomial

time by Proposition 3.

Note 3.3. Again, the right-hand side of (3.21(«)) can be described equivalently as

min(cr(G, D) —2), (3.22)
D

where D ranges over all curves D from v; to v;; which are not homotopic to part
(v3j> ---»> vy) of C; and for which there exists a curve Q ~ D not crossing any
C, ..., Gy, so that O starts via a face freely adjacent at v,; to F ;7 and ends via a face
freely adjacent at v;; to F;.. Similarly for (8) and (y).

We denote the system of linear inequalities (3.16), (3.19), and (B2) by Ax < b
(where 4 is a matrix and b is a column vector).

Il Solving Ax < b in Integers

In general it is an NP-complete problem to solve a system of linear inequalities in
integer variables. However, since matrix 4 = (a;;) satisfies

Y lagl<2 foreach i=1,....m (3.23)
j=1
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(where A has order m x n), it is quite easy to solve Ax < b in integers, namely by
“Fourier-Motzkin” elimination of variables. This recursively solves Ax <b in
integers, for any integer matrix satisfying (3.23) and any vector b e (Z U {c0})™

Proposition 6. There is a polynomial algorithm for solving Ax < b in integers, for
any integer m x n-matrix A satisfying (3.23) and any vector b € (Z L {0 })™.

Proof. We may assume that all rows of A are distinct, that A does not have any
all-zero row, and that each integer row vector a® with 1 < |[la|, <2 occurs as a
row of A.

We decompose the inequalities in Ax < b as

X <a,
2x, < B,
x1+xisyi (i=27-"7n)a

X, — % <96; i=2,...,n),
—X, <g (3.29)
—2x; <({
—X; =X <" i=2,...,n),
—x; +x,<6; i=2,...,n),
AXx <V,

where x' = (x,,...,x,)T and where 4’ is a matrix with n — 1 columns again
satisfying (3.23).
We can replace (3.24) by the following equivalent conditions:

maX{ —e&, —3{, max (—#n; — x;), max(—0; + x:)}

2<i<n 2<isn

<x; < min{cx, 1B, min (y; — x;), min (6; + xi)}, A'X <b. (325

2<i<n 2<i<n

Now if max{ —¢, — ${} > min{c, 38}, then clearly (3.25) has no solution. Moreover,
if —¢ = B and is odd, (3.25) has no integer value for x;. Hence we may assume

max{ —¢, —3({} < min{e, 3B} andif —¢=p, thenfiseven. (3.26)

Eliminating x, from (3.25) gives

max{—e, —1¢, max (—n; — x;), max (—6; + xi)}

2<i<n 2<ix<n

2<i<n 2<i<n

< min{a, 1B, min (y; — x;), min (5; + xi)}, A'X <b. (327)
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Equivalently,
X; <y +e i=2,...,n),
X; <y + 3 (i=2...,n),
—X; <d+¢ (i=2,...,n),
—X; <d;+ 4 (i=2,...,n),
—X; <n+a (i=2,...,n),
—X; <m+ip  (i=2,...,n),
=X+ Xx; <1+ Y (,j=2,...,n), (3.28)
—Xx; = X; <1+ 0; Gj=2,...,n),
X; <0+ a (i=2,...,n),
X; <0, +4p (i=2,...,n),

x,+x]_<_9,+yj (i,j=2,...,n),
X —x; <0+ 6; (,j=2,...,n),
A'x <b.

This is a system of linear inequalities in the variables x,, ..., x,, again satisfying
(3.23). We can reduce (3.28) so that we obtain an equivalent system A”x’ < b”
where A” has no two equal rows. We next recursively solve A”x” < b” in integers. If
it has no integer solution, then the original system Ax < b has neither. If A”x’ < b”
has an integer solution, we can insert it in (3.25), and determine an integer x,
satisfying (3.25).

Such an integer x, does exist: the maximum in (3.25) is not more than the
minimum. As both the maximum and the minimum are half-integers, an integer
value for x; would not exist only if —3{ = f and is not an integer. But this is
excluded by (3.26).

The case n = 1 being trivial completes the description of the algorithm. It has
polynomially bounded running time since at each iteration we reduce the number
of inequalities in (3.28) to O(n?). So we do not have exponential growth of the
number of constraints (which would occur in ordinary Fourier-Motzkin elimina-

tion). O

In Section 4 we show that if conditions (1.3) are satisfied, then the system Ax < b
constructed in Step II indeed has an integer solution. For a direct proof of the fact
that if (1.1) has a solution, then Ax < b has an integer solution, see Proposition 14
in Section 6.

V. Shifting C,,...,C,

Let (xyli=1,...,k;j=1,...,m; — 1) form an integer solution of Ax < b. These
integers will determine the shifts of the C;. We describe an iterative process, shifting
the C; by little steps, adapting the x; ; throughout.

If x;; = Oforall i, j, then C,,..., C, are pairwise disjoint and simple, as follows
directly from the Class 2 and 3 inequalities, and from the fact that no C; has
null-homotopic parts.
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e1g+1=€s

e1g= £
Fig. 15

Suppose next
M :=max{|x;|li=1,....k;j=1,....,m;— 1} > 0. (3.29)

First assume x;; = M for some i, g. Without loss of generality, i = 1. Consider e, ,
V14, €1,,+1 and the faces and edges incident with it “at the right-hand side,” as in
Fig. 15. Note that Fy, ..., F ¢ {I,,...,1,}, by Class 1 inequalities. We claim that
none of the edges ¢, ..., ¢,_, is used by any C;. For suppose ¢, = ¢;;, v;, = v;;, and
& = e;;,, forsomei,jand somet, ¢ €{1,...,s — 1}. We may assume that ¢, is not
traversed by Cy, ..., C, if 1 <¢" <min{t, ¢'}. If t < ¢, then x;, — x;; < —1, and

hence x;; > x;, + 1 = M + 1, contradicting (3.29). Similarly, if t > ¢, then x,, +
x;; < —1,and hence —x; > x;, + 1 = M + 1, again contradicting (3.29).

ij =
Now let

(Ulg~l = Wp, fl’ Wi, fz, Wasenns f;’ W, = vlg+1) (330)

be the vertices and edges on the path following the outer boundary of F,,..., F
(see Fig. 16). More precisely, let E(F) denote the set of edges incident with F. We
take for path (3.30) any simple path from v,,_, to vy, with edges in the
S):mmetric difference:

E(F)AE(F,)A --- AE(F)A{ey,, €1541)- (3.31)

Before proving the easy fact that path (3.30) thus obtained is homotopic to part
(V115 €141 V1g, €1541> V1g+1) Of Cy, we show the following. Let, for each h =
0,...,r, I, be some curve from v, to w, contained in one of the faces Fy, ..., Fi.

Then, foreach h=0,....r,

I'; is unique up to homotopy. (3.32)
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For suppose there exists a curve I', from v, to w, in one of F, ..., F,so that I'}, is
not homotopic to I',. Then we would have the contradiction 2 < 2x 19 =
cr(G,T,-T; ') — 2 =1, by a Class 3 inequality.

We derive:

Proposition 7. Parh (3.30) is homotopic to part (V1g—1€19> V1gs €1g+1> V1g+1) Of Cy.

Proof. By (3.32), each one-edge path (W ~1, f» W) is homotopic to I}, - T,.
Hence (3.30) is homotopic to I';*-T,, which is by (3.32) homotopic to part
(Vig-15 €14 V195 €194 1, Uyg1q) Of C. O

Let ¢’ be the smallest index so that v 1 = wy forsome b’ € {0, ..., r} and so that
part (vy,,...,vy,) of C, is homotopic to 'y 1. So ¢’ < g — 1. We can determine g
in polynomial time by Proposition 2.

Similarly, let g" be the largest index so that U140 = Wy for some h" € {0, ..., r}
and so that part (v,,,..., v,,.) of C, is homotopic to I',.. So g” = g + 1. Again g”
can be determined in polynomial time.

We easily check that h' < h” (using the fact that C, does not have null-
homotopic parts). Now we obtain C, from C 1 by replacing part (v, ..., v,,.) of
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C, by part (W, ..., w,.) of (3.30). We add new edges to G so as to keep Cj,
C,,..., C, pairwise edge-disjoint and without (self-) crossings.

Clearly, C, is homotopic to C,(since (145 ..., D14) is homotopic to I'y ' - Ty,
which is homotopic to (wy, ..., w,.)). The new C,, C,, ..., C, give new variables X;;.
‘We set them equal to the original x;;if i # 1, while X, ;are set equal to M — 1 on the
new part of C, and equal to the original values on the unchanged part of C,.

To be more precise, note that C, passes 7, := m; — (9" — ¢') + (h" — k') edges.
Let %;:=x; if 1<j<g, X%,;:=M-11if g <j<g + (R ~Fk), and X,;:=
Xy jrig-gy-th-wy if g+ (h" — W) <j <y — 1. Moreover, X;;:=x;; for i # 1.

Proposition 8. The X;; form an integer solution for the system of linear inequalities
derived from C, C,, ..., C,.

Proof. We only have to check those inequalities in the new system in which
variables occur corresponding to the new trajectory of C, (ie., %, ;with g’ <j <
g + (h" — I)). This follows from the fact that for all other inequalities the values of
the x;; and the range for the minimum on the right-hand side are unchanged (see
Notes 3.1-3.3).

Denote

61 = (510» sees 51,;.)- (3-33)

Consider some Class 2 inequality in the new system in which %,; occurs
(@' <j<g + (W = h)), say,

* Xy + Xy < er(G, D) — 2, (3.34)

for some curve D in the range described in Note 3.2 (with i # 1). Let h be so that
w, =0y; (e, h=h +j—g).

If %,; has coefficient +1 in (3.34), then we can extend D to a curve D":==T,-D
from v, to 5;; = w,. Then cr(G, D') = cr(G, D) + 1, and

X1+ X < (G, D) — 2 (3.35)
(a Class 2 inequality in the original system). Therefore

X+ X =M — 1)+ x5 = x1,+ x5 — 1 <c(G,D)—-2-1 =CI'(G,D)—2~6
(3.36)

So we have (3.34).

If X, ; has coefficient — 1 in (3.34), the situation is slightly more complicated. We
may assume D does not intersect edges of G. Now D is the concatenation D’-D” of
two curves D’ and D” so that D’ connects #,; with some vertex v, on C,,in such a
way that part (v,,, ..., v, ;) of C, is homotopic to T, - D'. (This follows from the fact
that D is homotopic to some curve Q starting at the negative side of C, at§; and
not crossing any of €,, C,, ..., Cy.)
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Now cr(G, D) = 2. (Otherwise, part (v, ..., v, ) of C; would be homotopic to
T',. However, v, = i, ; belongs to {wy, 1, ..., Wy _ 1}, contradicting the choice of i
and h".) Moreover, x,; < M and —x,; + x;; < cr(G, D”) — 2. Therefore,

_ilj-l-i‘ij' =-M + 1 +xij’

S -X.1f+xij/ + 1
<cr(G,D")—1
<cr(G, D) + cr(G, D) — 3
= cr(G, D) — 2.
Again we have (3.34).
Other inequalities are proved similarly. O
The case x;, = — M is dealt with similarly. This describes an iterative process of

adapting paths and variables. It is easy to see that it terminates, as at each iteration

the number of variables x;; with |x;;| = M strictly decreases. If all |x;;] = M have

been removed, we can start to remove all [x;;| = M — 1, and so on. We will end up

with all x;; = 0, ie., the shifted C;, ..., C finally are simple and pairwise disjoint.
In fact, this is a polynomial-time procedure:

Proposition 9. The number of iterations in the above algorithm is polynomially
bounded.

Proof. First, the number M is bounded by a polynomial in the size of the input,
since, for each variable x;;, we have x;; < j as consequence of Class 1 inequalities
(since there is a curve D following v;;, Fj, vy, Fij—1, ..., v;; successively, with
cr(G, D) = j). Similarly, —x;; <.

Moreover, the number of variables x;; at any stage of the shifting process is
bounded by (2M + 1)e, where ¢ is the number of edges in the initial graph G, i.e.,
before adding parallel edges to G.

To see this upper bound, consider a parallel class of edges connecting, say, v and
w. If ¢;; belongs to this parallel class, let z;;:= x;; if v =v;; and z;;:= —x;_ if
v = v;;—;. Now choose ¢;; and ¢, both in this parallel class, so that e;; is left of e;
(when going from v to w), and so that no edge between e;; and e, ;. is traversed by
any Cy, ..., Cy. Then we have z;; — z;;, < —1 (by Class 2 and 3 inequalities, since
all faces between ¢;; and e;.; belong to the same free adjacency class at v).

So z;.; = z;; + 1. Since each |z;| is at most M, it follows that there are at most
2M + 1 edges in the parallel class that are traversed by C,, ..., C,. Hence the sum
of the lengths of the C;is at most (2M + 1)e. Therefore, there are at most (2M + 1)e
variables, which proves the proposition. O

This finishes the description of the algorithm. In Section 5 we show that if
condition (1.3) is satisfied, the system Ax < b indeed has a solution. So if (1.3)
holds, the algorithm yields a solution to the disjoint homotopic paths problem,
thereby proving Theorems 1 and 2.
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4, Integer Solutions to Systems Ax < b

We now give necessary and sufficient conditions for the existence of an integer
solution for a general system Ax < b of linear inequalities, where 4 = (a;)) is any
integer m x n-matrix satisfying

Ylag<2 foral i=1..,m (4.1)
=1

In Section 5 we apply this characterization to the special system Ax < b constructed
in Step II of the algorithm in Section 3.

Thus let 4 = (a;;) be an integer m x n matrix satisfying (4.1), and let b € Z"™. By
(4.1), each row of 4 has at most two nonzeros. In characterizing if Ax < b has an
integer solution, we may assume that each row of 4 has at least one nonzero.

It is helpful to think of A as a bidirected graph: its vertices are the column indices
and its edges are the row indices. If row i has nonzeros in positions j and j' with
j #Jj, it gives an edge connecting j and j, and can be represented as in Fig. 17,
depending on whether (a;;, a;;) = (1, 1), (1, —=1), (= 1,1) or (=1, —1).

If row i has only one nonzero a; = + 2, it is represented by a loop as in Fig. 18
(where a;; = +2 and —2, respectively). Moreover, there are edges called ends, with
exactly one nonzero g;; being +1. We represent them as shown in Fig. 19 (where
a; = +1and —1, respectively).

We consider certain types of paths in this bidirected graph A, which we call
“links.” A link is a sequence

(ilajlsizajZ:---:jz-lait) (42)
+ 1 + + i - .—1+ I‘-l-.'
B 3! 3 j 3 3! 3 3
Fig. 17
i i
J bl
Fig. 18
i i
+ -—
3 3

Fig. 19
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(with t > 2) of rows iy, ..., i, and columns ji, ..., satisfying:

(i) i; is an end at j, and i, is an end at j,_,;
(ii) foreach h=2,...,t — 1, either j;; # j, and i, is an edge connecting
ju-1 and j,, or j,_, =j, and i, is a loop at j,; (4.3)
(iii) foreachh=1,...,t — 1,

a < 0.

i gy 1

Condition (4.3(iii)) means that at each vertex j, the sign flips. Examples of links are
shown in Fig. 20.
Note that (4.3(iii)) implies that, for each vertex j=1,...,n

)

1
Y a,;=0. 4.4)
h=1

That is, adding up the rows of A with indices i,, ..., i, gives all zeros.
The length of link (4.2) is by definition

% b (4.5)
h=1

It follows directly from (4.4) that if Ax < b has a solution x (integer or not), then
each link has nonnegative length, since

t t n n 14
Y b2 Y Y oaxi=3Y x) a,;=0 (4.6)
h=1 j j=1 h=1
We next consider cycles. A cycle is a sequence

UO’il’jl:“-a injx) (47)
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Ig¥dg 1. 3

1 2
ToC
“ot
i . i
6 6 ]5 5
Fig. 21

(with t > 1) satisfying:

@) jo =5
(i) for each h=1,...,t, either j,_, # j, and i, is an edge connecting
Ju—1 and jy, or j,, = j, and i, is a loop at j,;
(iii) for each h = 1,...,t (taking i, ==1i;), (4.8)

a < 0.

injn” Fin+ 1jn
We give an example in Fig. 21 (in fact, vertices and edges may coincide).

Again, the length of cycle (4.7) is given by (4.5). Since (4.4) again holds, we know
that if Ax < b has a solution x (integer or not), then each cycle has nonnegative
length. Actually, it can be shown that Ax < b has a solution x, if and only if each
link and each cycle has nonnegative length.

To characterize the existence of an integer solution, we need one further concept.
A cycle (4.7) is called doubly odd if there exists an s with 0 < s <t so that

(i) jo =Js =Jr and a; j,- a5, > 0; 4.9)
@) Y5-, b;, and ¥ h_4 4 by, are odd numbers.

An example of a cycle satisfying (4.9(i)) is given in Fig. 22.
Note that (4.9(1)) implies

;""”‘“{iz if j=Jo- ‘
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This implies that if Ax < b has an integer solution x, then any doubly odd cycle has
positive length; since

Yo=Y, Y = ) XY 4= +2x, (4.11)
h=1 B=1j=1 =1 k=1

and since the first term in (4.11) is odd, we should have strict inequality in (4.11)

and hence also in (4.6).
We show that the necessary conditions mentioned are also sufficient:

Proposition 10. A system Ax <b satisfying (4.1), with be Z™, has an integer
solution x, if and only if:

(i) each link has nonnegative length;
(ii) each cycle has nonnegative length, (4.12)
(iii) each doubly odd cycle has positive length.

Proof. Above we showed the necessity of (4.12). We show sufficiency by induction
on n, the case n =1 being trivial. In fact, the inductive step follows from the
algorithm (Fourier-Motzkin elimination) described in Proposition 6. To see this,
let (4.12) be satisfied. This implies (3.26) (by applying (4.12(ii)) and (4.12(iii)) to
cycles consisting of two loops at the same vertex). Moreover, (4.12) is maintained
after elimination. This follows from the fact that each inequality in (3.28) is a
combination of inequalities in (3.24), in such a way that each link and each (doubly
odd) cycle for (3.28) comes from a link or (doubly odd) cycle for (3.24) with the
same length. The induction hypothesis gives that (3.28) has an integer solution.
Hence (3.24) also has an integer solution. O

In fact we have:

Proposition 11.  Let Ax < b be a system satisfying (4.1), and b € Z™, so that, for each
j=1,...,n, the inequalities x; < o; and —x; < B occur among Ax < b for some a;,
B;€ Z. Then condition (4.12(i1)) is implied by (4.12(1)).

Proof. Suppose (o, i1, J1s---» s Js) 1S @ cycle of length — 4 < 0. Without loss of
generality, a;,;, <0 and q;; > 0. By assumption, x;, <« and —x;, < f occur

among Ax < b, with finite « and f. We may assume that they are the first two
inequalities in Ax < b. Let r be a natural number with r > o + f. Consider the link

(Ljolys jiseesbnfi=Jok-oos ity J1o o v v les Jy = Jo) 2), (4.13)

where there are r repetitions of string iy, j;,..., i, j, = jo. Link (4.13) has length
a —rA + B < 0. This contradicts (4.12(i)). d
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5. Proof of Theorems 1 and 2

We now apply the results described in Section 4 to the special system Ax < b of
linear inequalities constructed in Step II of the algorithm.

Proposition 12. Let Ax < b be the system of linear inequalities given by (3.16),
(3.19), and (3.21). If condition (1.3) is satisfied, then Ax < b has an integer solution x.

Proof. Since the right-hand sides of (3.16) are finite, by Propositions 10 and 11 it
suffices to show that conditions (4.12(i)) and (4.12(iii)) are satisfied. Observe that
the column indices of 4 are now pairs (i, j), and that each row of A correspondsto a

pair of curves D ~ Q (see Notes 3.1-3.3).
I. Suppose Ax < b contains a link of negative length. By construction of Ax < b

it means that there exist:

(1) pairs (il’ jl)’ (iz’ jz)’ Tt (it’ jt)’

(ii) curves Dy, Dy, ..., D,z [0, 11> R\, u---U T), 5.1
(iii) curves Qq, Qy,..., Q.1 [0, 1] >R\, u---U T,
so that:

(1) D, is homotopic to Q, (for h =0,..., 1),

(i) Qo(0), Q1) e bd(I; U-- LI,

(i) Q4-1(1) = Qy(0) = v,,;, for h=1,...,1),

(iv) Q, does not cross any C,,...,C, (h=0,...,1),

(v) Qo starts via a face freely adjacent at Q,(0) to some face in
{I,....1,},

i) Q,_, endg via a face freely adjacent at v;,, to F;f;, and Q, starts via (5.2)
a face freely adjacent at v,,;, to F;;,, or conversely (ie, F;;, and
F; . interchanged) (for h=1,...,1),

ihjn

(vil) Q, ends via a face freely adjacent at Q1) to some face in
{I,,...,1,}, .
(viii) if i, = i, ,, then Q, is not homotopic to part (v;,;, ---» Vi, ,) Of
C,,
and so that

-1

(cr(G, Dy)— 1) + ( Y. (cr(G, Dy) — 2)) + (cr(G, D)) — 1) < 0. (5.3)

h=1

Note that it follows from (5.2(vi)) that the concatenation Q,, _ ; @}, crosses Cir at vy, ,.
Let D and Q be the concatenations DD, --- D, and 0,Q, --- Q,, respectively. So
D and Q are homotopic (by (5.2(1))), and, moreover,

cr(G,D)=1+ i (cr(G,Dy) — 1) <t (5.4)
K=0
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by (5.3). We show
mincr(C;, D) > ¢, (5.5)

o8

]
—

13

thus contradicting (1.3(ii)). Since Q and D are homotopic, it is equivalent to show
k

Y. miner(C;, Q) = t. (5.6)
i=1

To this end, consider the universal covering space U of R*\(I, u---uUl,). Each
lifting Q' of Q to U is the concatenation of liftings Qo,...,Qr of Qo,..., 0.,
respectively. Now Q' connects two points on the bggndgry of U, and crosses,
successively, t different liftings of C,, ..., Cy (by (5.2(viii))) (i.e., any two successive
liftings of Cy, ..., C, met by Q' are different). Moreover, there are no fur.ther
crossings of Q' with liftings of Cy,..., C,. Hence, if Cy, ..., Cy, Q are homgtgplc to
C,, ..., C,, Q, respectively, then any lifting of Q to U intersects at least ¢ liftings of
C,....,C,. This implies (5.6). _

IL. It turns out that deriving condition (4.12(iii)) from (1.3) is less direct, due to
the fact that fixed points are excluded from being traversed by doubly odd closed
curves. To settle this, we first show a somewhat technical statement. Let B = B, B,
be the concatenation of two closed curves By, B,: S; » R*\(I; U --- U I,) so that
B,(1) = B,(1) ¢ G, cr(G, B) is finite, and

(i) cx(G, B,) # Y i-1 kr(Cy, B,) (mod 2), 5.7)
(ii) cr(G, By) # Yi=1 kr(C;, B,) (mod 2),

We show:

Claim. There exists a natural number n so that, for each closed curve Q freely
homotopic to (B,B,)(B7 *B; 1) with the property that each lifting of Q crosses each
lifting of each C, at most once, we have

k
cr(G, (B;B,)"(By 'By ')") > Z kr(C;, Q). (5.8)

i=1

(Here for any closed curve D and neZ, D" denotes the closed curve with
D"(z):=D(z")forall ze §,.)

Proof of the Claim. If B,B, does not traverse any fixed point of any C;, we can
take n = 1; since B,B,B;'B; " is doubly odd (with respect to the splitting into
B,B,B7 ! and B; '), we have by (1.3(iii))

k k

cr(G, B,B,B;'B; 1) > Z mincr(C;, Q) > Y. kx(C;, Q). (5.9)

i=1 i=1

This implies (5.8).
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Suppose next that B, B, traverses some fixed point w of some C;. Without loss of
generality, i = 1 and B, traverses w. By condition (1.3(ii)), w cannot be a fixed point
of any other C; and is a fixed point of C, only once (i.e., C is homotopic to a curve
traversing w exactly once). So we can shift each C; slightly in the neighborhood of
w, 50 as to obtain curves C; ~ C; so that

no C; traverses w, except for C, traversing w exactly once. (5.10)

We can decompose B, as the concatenation B’ B’ of two (nonclosed) curves B
and B] with B(1) = B{(0) = w.
Consider for n € N the curve

Ay+=B'(B,B,)"By(By ' By )\'(B) ™, (.11)

taken as a nonclosed curve from w to w. (Here, for any curve D: [0, 1] - R?, curve
D~ is given by D™ *(x):= D(1 — x) for x € [0, 1].) ’

Let A, be a lifting of 4, to the universal covering space U of R*\(I; U --- U ).
Then A, connects liftings w, and w, of w, which are fixed points of liftings C,, and
C,,, respectively, of C,. Now we choose n so that C,, and C,, cross 4, the same
number of times. (Such an n exists since, if n is large enough, C,, only crosses the
beginning part (corresponding to B(B,B,)") of 4;, and C,, only crosses the end
part (corresponding to (By *B; )"(B})™!) of A,. By the symmetry of the universal
covering space and of A4,, it follows that the number of crossings are the same.)

Let A, be the following curve from w to w:

A,:=(B,)"'B5'B). (5.12)

Let A, be the lifting of A, to U with 4,(0) = w,. Let w3 = 4,(1), which is again a
lifting of w. Let C, ; be the lifting of C, which has wj as a fixed point. Schematically
we have Fig. 23.

Let & denote the collection of all liftings of all C,, ..., C,. Note that, except for
C,, and C,,, no lifting in & traverses the endpoints w, and w, of 4, (by (5.10)).
Similarly, except for C,, and C, 5, no lifting in % traverses the endpoints w, and w;
of 4,.




560 A. Schrijver

Define
ay:=number of L € & w%th kr(L, %1) oddand L # C,,, Cy,, (5.1%)
o, ==number of L € & withkr(L, A,) odd and L # C,,, C,;.
Then:
(i) cr(G, A;) = Y% miner(Cy, 4,) = oy + 2, (5.14)

(i) cr(G, 4,) = Y% | miner(Cy, 4,) =y + 2.
Moreover, since kr(C,,, 4;) = kr(C,,, 4,), we have

k
«, + 2 =o; = number of Le ¥ with kr(L, 4,) odd = Y kr(C;, 4))

i=1

k

z 1(C;, B,) # c1(G, B,) =cr(G, A;) (mod 2). (5.15)
So we have strict inequality in (5.14(i)). Hence

cr(G, (ByBo)" " H(By By 1)) = ¢r(G, A,) + cx(G, Ay) — 2 > oy + ay + 2
> 1 + (number of L € & with kr(L, 4, 4,) odd)

llM::-

kr(C., 0) (5.16)

for any closed curve Q freely homotopic to (B,B,)"**(B;'B;!)"*! with the
property that any lifting of Q crosses any L € % at most once. O

IT1. We now show (4.12(iii)). Suppose to the contrary that Ax < b has a doubly
odd cycle of nonpositive length. Again it follows that there exist:

(1) pairs (iy, j1)s (i35 o), -+ Cips Ji),

(ii) curves Dy, ..., Dy: [0, 1] > R*\(I, u--- U 1)), (5.17)
(i) curves Qy,..., Q1 [0, 1] > RN\, U--- L)), ’
(iv) an index s with 0 < s < t and (i, j5) = (i;, j.)

so that (taking Q,,,=0Q,):

(i) D, is homotopic to Q, (for h =0, ..., t),
(1) Qu(1) = Q4s1(0) = vy, (for h=1,..., 1),
(iii) @, does not cross any Cy,...,C, (h=1,...,1),
(iv) Q,ends via a face freely adjacent atu, ; to F ,Lh and Q, , , starts via

a face freely adjacent at v,,;, to F;;, or conversely (ie., F;7, and
F;, interchanged) (for h = 1,...,1), (5.18)
(v) if§ 1,, = iy, then Q, is not homotoplc to part (v, _ -5 Uy Of
C,(h=1,...,0),

(vi) Qs ends via a face freely adjacent at v, ; to F;!; and Q, ends via a
face freely adjacent at v, ;, to F;; or conversely,

(vii) 3%=1 (cx(G, D) — 2) and Y-, , (cr(G, D,) — 2) are odd,
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and so that )
Z (cr(G, D) —2) <0. (5.19)
h=1

Define the closed curves
R,:=D;---D;, Ry=Dsyy D, V=01 Qs Y2 =0y Q. (520

We can decompose R, as R|R, where R’ and R} are (nonclosed) curves with
R(1) = Rj(0) ¢ G. Let B, and B, be the closed curves given by

B,=RiR,(R)™' and  B,:=(R) 'R;'R;. (521)
So B,(1) = B,(1) = R(1) ¢ G. By (5.18)(vii)) we have
cr(G, By) = 1 4+ 2(cr(G, R}) — 1) + cr(G, Ry) =1 + c1(G, R,)

=1+ Z (G, D,) —1)=t—s (mod ?2). (5.22)

h=s+1

Moreover, as each D, crosses the C; an even number of times,

k k k t
3 kr(C,, B,) = 2(2 kr(C,, R’{)) + (2 S kr(C,, D,,)) +t—s+1
i=1 i=1

i=1h=s+1
#t—s (mod?2). (5.23)

So cr(G, B,) # Y%_, kr(C,, B;) (mod 2). Similarly for B,. Hence the Claim applies.
Let n have the properties described. As

(B,B,)(Bi 'B; )" = (R{R,R{ 'Ry 'R)R{R;'RTR,RY)" - (5.24)

is freely homotopic to (R,R,R; 'R5 1) (R, R 'R{ ' R,)", it is also freely homotopic
to

Q=Y LY Yy (Y Y YT ) (5.29)

By (5.18(iii)-(v)), any lifting of Q does not cross any lifting of any C; more than
once. So we have (5.8)

k
cr(G, (B, B,)'(B; 'B; 1)) > ). kr(C;, Q). (526)

i=1
Now
cr(G, (B,B,)"(By 'B; 1)) = 4n-cr(G, R\R;)

=2n- Z (cx(G, D;) — 1) < 4nt (527)

h=1
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by (5.19). On the other hand,

k
Y. kr(C;, Q) = 4nt, (5.28)
i=1

contradicting (5.26). O

Proposition 12 shows the correctness of the algorithm, and proves Theorems 1
and 2.

6. Disjoint Homotopic Trees

In this section we extend the method described in Section 3 to the disjoint
homotopic trees problem:

given: a planar graph G embedded in R?;

a subset {I,,..., I,} of the faces of G (including the unbounded
face);
paths Cy,,..., Cyy,..., Cyy, ..., Gy, in G, each with endpoints

on the boundary of I, U---U I, so that, for each i = 1,...,k, (6.1)
Ciy, ..., Cy, begin in the same vertex;

find: pairwise vertex-disjoint subtrees Tj,..., T, of G so that, for
eachi=1,...,kandj=1,...,¢;, T; contains a path homotopic
to Cy;in R*\(I, u---U I,).

Theorem 3. The disjoint homotopic trees problem (6.1) is solvable in polynomial
time.

The polynomial-time algorithm for (6.1) consists of four basic steps similar to
those for solving the disjoint homotopic paths problem:

I. Uncrossing C;4,..., Cy,.

II. Constructing a system Ax < b of linear inequalities.
ITI. Solving Ax < b in integers.
IV. Shifting C,,, ..., Cy, and deducing trees Ty, ..., T,.

(6.2)

We make similar assumptions to those in Section 3 (assumptions (3.1)):

(i) each edge of G is traversed at most once by the C;j;
(i) the beginning vertex of any C;; has degree t; in G, while the end
vertex has degree 1 in G; (6.3)
(ii)) no edge traversed by any C;;, except for the first and last edge of C;
is incident with a face in {I,, ..., I,}.

jo

These conditions can be attained by adding new vertices and (parallel) edges. From
(6.3(i1)) it follows that the common beginning vertex of C;y, ..., Cj, is not traversed
by any other C,, ..., C,, . The end vertex of any C;; is not traversed by any other
Cipsooes Chype



Disjoint Homotopic Paths and Trees in a Planar Graph 563
I Uncrossing Cyy, ..., Cy,

This step modifies C,,,...,Cy, so that they have no (self-)crossings and no
null-homotopic parts. We can proceed similarly as in the uncrossing step of Section
3.1. We should however be a little more careful as now different curves can have the
same beginning vertex. It means that in some cases we must exchange not the parts
between two crossings, but the parts between the common beginning vertex and a
crossing.

More precisely, let

C;= (v?,e},vll,...,elm,u,:,), (6.4)
Cifj' = (vo, el, Ul, ey em', Um').

Again, if (A.j)#(@{,j) we call a pair (hh) (with 1<h<m-—1 and

1<K <m — 1) a crossing if v, = v} and e,, €}, €,41, €+ Occur in this order

cyclically at v, (clockwise or anticlockwise). Then we have:

Proposition 13. Let (6.1) have a solution, let (i,j) # (i',j), and let (h, K be a
crossing of C;; and C;;. Then there exists (g, g") so that

part (v, ..., v,) of C;; is homotopic to part (v, ..., vy) of Cyj (6.5)
and so that (g, g') = (0,0) or (g, g') is a crossing of C;; and cy;-.

Proof. Similar to the proof of Proposition 4 (consider the universal covering
space of R*\(I; U--- U I). 4

So if C;;and C;; have a crossing, we can find (by Proposition 2), in polynomial
time, pairs (g, g') and (h, k') so that (6.5) holds. After exchanging the two parts we
arrive at a situation with fewer crossings. Repeating this, finally no two different C;;
and C;; have any crossing.

Self-crossings and null-homotopic parts can be removed just as in Section 3 (see
Proposition 5). So we end up with C,y,..., C,, without (self-)crossings and
null-homotopic parts.

II.  Constructing the System Ax < b of Linear Inequalities

Again we introduce a variable each time a curve C;; traverses a vertex. More

precisely, let, foreachi=1,...,kandj=1,...,¢;,
Cij = (vijO’ €ij15 Vijis < -+ > €ijmyjo vijmu)' (6.6)
We introduce a variable x;; for each i=1,...,k j=1,....t, and h=1,...,

m;; — 1. The values of these variables are going to determine the shifts of the C;;.
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Again we put linear constraints on the x;;, in order to accomplish that the shifted

C;; can be combined to trees as required.
We denote by F7}, and Fy the faces on the right-hand side and on the left-hand

side, respectively, of e;;, when going from v;3,_, to v;3. As in Section 3, the curves
C,; give us the free adjacency relation between faces at any vertex v (except at the
end vertices of each C;j). This yields the auxiliary graph H, with length function on
the edges, and with two mappings ¢ and y to R*\(I, U -+~ v l,).

The inequalities in Class 1 are similar to those in Section 3:

Class 1. Foreachi=1,...,kj=1,....t;,and h=1,...,m; — 1 we require:
(@) X < mm,t length(P), 67)
(B) — X, < minp length(P).

The minimum in («) ranges over all paths P in H from (v;j, {F;>) to any vertex
(w,A)of HwithAn {I,,...,1,} # &. The minimum in (f) ranges over all paths P
in H from (v, {Fi»>) to any vertex (w, 1) of H with An {I,,...,1,} # &.

Class 2 falls apart into two subclasses. Class 2A will assure that curves C;; and
C;j with i # ' do not intersect:

Class 2A. Foreach i i =1,. kj—l Slyh=1,....my—1,j=1..t,

and W' =1,...,my; — 1 with i ;é i’ we requlre
(O!) xuh + xljh < dlStH((vuh’ <Fuh>) (vlj ‘h’> <F1 ‘j'h >)) - 1:
(ﬁ) xuh l_[h < dlStH((vuh’ <Fuh>) (vl_] k' <F11h >)) - 1’ (68)

™) = Xijp — Xy S diStH((vijhs <Fi;h>) (Ui’j’h’a <F1_Jh>)) -1

Ifi=17,j+]J, then the shifted C;;and C;, - may touch, but may not cross. This
gives the Class 2B inequalities:

Class 2B. Foreach i=1,...,k j, j=1,...,1 G#J) h=1,...,m;— 1, and
h'=1,...,m; — 1 we require:

(a) xuh + X:ljh < dlStH((Uuha <Fuh>)’ (Ul_] ‘h’> <Fz_;h >))
(ﬂ) xuh 1_] ‘h’ < dlStH((vuh’ <Fuh>), (Uu ‘h’> <FU ‘h’ >)) (69)
()}) uh uh < dlStH((vuh» <Fljh>) (vljh H <Fu ‘h’ >))

Finally, Class 3 inequalities are intended to avoid that C;; and C;; (possible

J=]J') intersect each other around one of the holes Iy, ..,

Class 3. For each i=1L..k j ji=1..1, h=1,....,m
1,...,m; — 1 we require:

;— 1, and W =
(@) x;3 + x;5 < min, length(P) — 1,

(B) Xijn — Xij < min, length(P) — 1, (6.10)
(") =Xy~ Xij < min, length(P) — 1.
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Here in (x) the minimum ranges over all paths P in H from (v, (Fij>) to
(v;yw»> <Fi4») which are not homotopic to the following part of C;;'C;;:

(Uijhs ceos Uijo = Uijigseees Uij'h') (6.11)
(ifj =J', (6.11) is homotopic to part (v;j, ..., V;3) of C;;). Similarly for () and (y).

This defines the inequality system Ax < b. Note that the same left-hand sides
may occur among (6.9) and (6.10)—we can restrict ourselves to the ones with
smallest right-hand side.

III.  Solving Ax < b in Integers

Since matrix 4 again has the property that the sum of the absolute values in any
row is at most 2, we can solve Ax < b in integers in the same way as we did in
Section 3. We show here:

Proposition 14. If (6.1) has a solution, then Ax < b has an integer solution.

Proof. Suppose (6.1) has a solution, i.e., disjoint trees T3, ..., T, as required exist.
We describe an integer solution z for Ax < b. Let U be the universal covering space
of RA\(I, u---uUl »)» With projection function =, and let G be the (infinite) graph
n '[G]. Choosei=1,...,k,j=1,...,t;,and h=1,...,m; — 1. Let C;; be some
lifting of C;; to U. Denote

Cif = (ﬁiJO’ tre 5ijm.-_;)a (612)

where v is a lifting of v. As C;; has no null-homotopic parts, C,;is a simple path in G.
Let Q be the unique path in T; connecting v;jo and vy, So Q and C;; are
homotopic. Hence there exists a lifting Q of Q to U so that ( is a simple path from
Vijo 1O Vjjm, -
0 splits U into two parts (as ;o and 7;;,,, are on the boundary of U): a part to
the left of Q0 and a part to the right of Q. We consider three cases.

Case 1: v, is on Q. Then define
Zyj=0. (6.13)
Case 2: v, is to the left of Q (see Fig. 24). Then define
2= min cr(G, D) — 1, (6.14)

where the minimum ranges over all curves D in U connecting 5;;, and any point

on Q.
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Fig. 24

Case 3. Dy, is to the right of Q (see Fig. 25). Now define
Zijh = '_(mln CI'(G, D) - 1>’ (6.15)
D

where again the minimum ranges over all curves D in U connecting v;;, and any
point on Q.

This defines the z;;. Note that by the symmetry of the universal covering
surface, the values are independent of the choice of lifting C;;.
We show that the z;;, form a solution to Ax < b.

Class 1 inequalities. By symmetry we need only check (6.7(«)). If z;3, <0 the
inequality is trivially satisfied. If z;;, > O we are in Case 2 above. Let P attain the
minimum in (6.7(«)). Then y - P is a curve from v;, to the boundary of I, U --- U I,
starting via a face freely adjacent at v, to F}, and not crossing any C;;. Hence the
lifting L of y o P to U with L(0) = ©;;, has its endpoint on the boundary of U, on the
right-hand side of C;; or on C;;. Hence L(0) is also on the right-hand side of § or on
Q. So the lifting L' of ¢ P to U with L'(0) = i;;, also has its endpoint on the
boundary of U, on the right-hand side of § or on Q. So L’ intersects Q. Therefore,
by definition (6.14) of z;:

zi < ox(G, L) — 1 = length(P). (6.16)

Fig. 25
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Fig. 26

Class 2 A inequalities. By symmetry we need only check (6.8(x)). Let P be a shortest
path in H from (v, {Fj)) to (vyj, <Fiyy). Consider a lifting L of o P to U,
connecting liftings 7, and ;.; say, of v, and v; s, respectively. Let C;;and C;. ;- be
liftings of C;;and C;; so that the hth vertex of C;;is 7, and the h'th vertex of C;.; is
vi'j'h’ .

Since y o P starts via a face freely adjacent to Fjj, at v;;, and ends via a face freely
adjacent to F [}, at v, ;, and since it does not crossany Cy, ..., Cy, we know that L
runs on the right-hand side of C;; and on the right-hand side of C;,; (see Fig. 26).
Let Q be the simple path in T; connecting v;;, and v;,, and let Q' be the simple path
in T;; connecting v;.j.o and v; j.,,,,,.- Let @ and Q' be liftings of Q and Q" homotopic to
Ci; and C;,; respectively. Again Q' is on the right-hand side of 0, and Q is on the
right-hand side of Q' (see Figure 27).

So U is decomposed into three regions A4, B, and C as indicated, where we
assume B to be open and A4 and C to be closed (so @ is in A and @ is in C). We
consider a number of cases depending on in which of the parts A, B, and C the

<

. Viisig
ljmij J.‘]

10|

130

Fig. 27
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points 7, and ., are located. The following fact is trivial but basic:
for any curve D in U connecting Q and Q' we have c¢r(G, D) >2 (6.17)

(since § and Q' are disjoint, as T; and T;. are disjoint). Let L’ be the lifting of ¢« P
connecting d;;, and 0; .

Case A: vu€ A and bypy € C. Then L' can be decomposed as D,D,D; with
D,(1) = D,(0) on Q and D,(1) = D4(0) on Q". By (6.17), cr(G, D) > 2, and hence
Zijw + Zpjye < (cx(G, D)-1)+ (cr(G, Dj)—-1)
= cr(G, L') — cr(G, D,) < cr(G, L) — 2 = length(P) — 1. (6.18)
Case B: v;,€ B and ©;, €C. Then L' can be decomposed as D,D; with
D,(1) = D4(0) on Q'. Let D, attain the minimum in (6.15). Then, by (6.17),
cr(G, D,D,) > 2, and hence
Zijn + Zppw < (—cr(G, Dy) + 1) + (cr(G, D3) — 1)
= ¢r(G, D,D3) — cx(G, D, D,) < cr(G, L) — 2 = length(P) — 1. (6.19)
Case C: 0, € C and D, € C. Let D attain the minimum in (6.15). Then D can be
decomposed as D,D, with D,(1) = D,(0) on Q'. Then, by (6.17), cr(G, D,) > 2,
and hence
zijh + Zi'j'h’ S (""CI‘(G, D) + 1) + (Cl’(G, Dle) - 1)
= cr(G, L') ~ cr(G, D) < cr(G, L') — 2 = length(P) — 1. (6.20)

Case D: v;j, € A and v, ), € B. By symmetry similar to Case B.

Case E: v, € A and 0, € A. By symmetry similar to Case C.

Case F: v;;,e BU C and ©;;,,€ Au B. Then z;;, <0 and z;;, <0, and hence
trivially z;;, + 2., < length(P) — 1.

This shows (6.8(a)).
Class 2B inequalities. By symmetry we only consider (6.9(x)). They can be checked

similarly to checking (6.8(c)) above. The only difference is that now Q and Q' can
touch. So the liftings O and Q' may also touch. Therefore instead of (6.17) we have

for any curve D in U connecting O and §’ we have cr(G, D) > 1. (6.21)

Hence we get z;;, + z; ;- < length(P) instead of < length(P) — 1.

Class 3 inequalities. By symmetry we only consider (6.10(c:)). Again checking this is
similar to checking (6.8(x)). As path P attaining the minimum in (6.10(a)) is not

homotopic to part (v;j, ..., V0 = V05 --., Uijw) Of C;'Cyj, we know that the
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lifting L of ¥ o P connects disjoint liftings @ and Q'. So we can proceed as for Class
2A inequalities. O

IV.  Shifting C,,, ..., Cy, and Obtaining T,, ..., T,

We finally shift the C;; using the integer solution x;; to Ax < b, and derive from the
shifted C;; the trees Ty, ..., T,.

First assume x;;, = O for all , j, h. Foreach i = 1,..., k, let T; be any spanning
tree in the subgraph of G made up by the vertices and edges occurring in
Ci, ..., Cy. We show:

Proposition 15, T,,..., T, form a solution to the disjoint homotopic trees problem
(6.1).

Proof. First note that Class 2A and 3 inequalities imply that if C;;and C;.; have a
vertex in common, say v;;, = Uy, then i =i’ and

part (v, - .. , vy;) of Cy; is homotopic to part (v;.g, - - - 5 Uyw) Of Cypr. (6.22)

In particular, if moreover j = j, then part (v;j, ..., vy) of C;; is null-homotopic,
and hence h = I’

It follows that Ty, ..., T, are pairwise vertex-disjoint. Next we show that for each
I, j the unique simple path in T; from v;j to v;,,, is homotopic to Cy;. In fact we
show that for each i, j, h the unique simple path P;j in T; from v, to vy is
homotopic to part (v v;;) of C;;. This is done by induction on the number of
edges in P;,.

If P;;, has length 0, the statement is trivial. If P;;, has at least one edge, consider
the last edge e of P;;,. As it is in one of the paths C;, ..., C;,, there exist j', k' so that

ijOs s

ijh-

€ = Cijws Vijp = Vijp- (6.23)
Now P, -, is shorter than P;; and hence by the induction hypothesis it is
homotopic to part (v, ..., Vs - 1) of Cyjr. Therefore, P;j is homotopic to part

(Vij0s - -+ » Uyjy) Of C;j. Then by (6.22) we know that Py, is homotopic to part
(Wijos -+ V) Of Cj. u

Suppose next
M=max{xglli=1,... . kj=1,...,t5h=1...,mg >0 (624
and suppose x;; = M for some i, j, h. Like in Section 3, consider e;j, Vijns €ijn+1 and
the faces and edges incident “on the right-hand side” (se¢ Fig. 28).

Note that F,,..., F ¢ {I,,...,I,} by Class 1 inequalities. We claim:

we may assume that ¢,, ..., &_, are not used by Cyy, ..., Ch,- (6.25)
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Proof of (6.25). Suppose
&y = Epjns Vijn = Virjns &y = €pjpr 41 (6.26)

for some i', j, W and ¢, ¢ € {i,..., s — 1}. We may assume that ¢,. is not traversed
by Ci1, ..., Ci if 1 < ¢" <min{g, g'}.
Suppose first g > g'. Then

xijh + xiljrh' S - ]. (6.27)

if i#17, or if i=1i"and part (v;j,...,0;) of C;; is not homotopic to part
(V305 ---» Uijw) Of Cyj (by Class 2A and 3 inequalities). However, (6.27) implies
Xpjw < =Xy — 1 = =M — 1, contradicting (6.24).

Moreover, we have, if i = I,

xijh + xij'h' < 0 (628)

if part (vo, - -, ;) Of Cy; is homotopic to part (v;, ..., ;j4) of C;j (by Class 2B
inequalities). This however implies that either v;,,  or v;;, , is in the interior of the
closed curve formed by (v, ..., v;5) and (v;j0, ..., V). As this closed curve is
null-homotopic and as v;,,,; and v;j.,,, , are on the boundary of I, U --- U I ,, thisisa
contradiction.

So we know g < ¢'. Then x;3, — x;;, < 0 (by Class 2A, 2B, and 3 inequalities).
Hence also x;.;,, = M. Replacing i, j, h by 1, j', i’ decreases the “opening” (i.e., the
number s of faces on the right-hand side in Fig. 28). After a finite number of such
replacements we are in a situation as claimed in (6.25). O
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Knowing (6.25), we can shift C; at v, as in Section 3, and similarly if
X, = —M. As in Proposition 9 we show that the number of iterations is
polynomially bounded, and hence we have a polynomial-time alagorithm. This
proves Theorem 3.

7. Disjoint Trees
‘We finally consider the disjoint trees problem:
given: a graph G;
subsets W, ..., W, of V(G);

find: pairwise vertex-disjoint subtrees T, ..., T, in G so that W. < V(T))
fori=1,... k.

(1.1)

This problem is NP-complete. Robertson and Seymour showed that for fixed
| W, L --- U W] there exists a polynomial-time algorithm for (7.1). We show that if
G is planar, it suffices to fix the number of faces necessary to cover W, U --- U W,.
This is derived from Theorem 3, essentially by enumerating “homotopy classes” of
trees.

For any connected planar graph G and any choice of faces I, ..., I, of G, call
two spanning trees T; and T, of G equivalent (with respect to Iy, ..., I,) if, for any
two vertices u, won bd(I; U --- U I ), the unique u-w path in T, is homotopic to the
unique u-w path in T, in the space R*\(I, U ---1,).

We study enumerating equivalence classes of spanning trees. In fact, we
enumerate representatives for these classes, i.e., we enumerate trees B, ..., By so
that each equivalence class intersects {Bj, ..., By}

Proposition 16.  For each fixed p, we can enumerate, in polynomial time, representa-
tives for the equivalence classes of spanning trees, for any connected planar graph G
and any choice of faces I,, ..., 1, of G.

Proof. Let W:=V(G) nbd(I; U--- U I,). Draw a graph G* dual to G. So in each
face F of G we put a vertex F* of G*. If F, and F, have an edge e in common, we
connect Ff and F* by an edge of G* crossing e.

I. We first show that, for each j =2, ..., p, we can enumerate, in polynomial
time, I¥-I* paths P,,..., P, in G*, so that each simple If-I} path in G* is
homotopic to at least one path among P, ..., P, in the space R*\ W. Without loss
of generality, j = 2.

Consider the set E, of edges of Gon bd(I; u -+ u I,). Let E, be an inclusionwise
minimal set of edges so that E; U E, forms a connected graph on the set ¥, of
vertices covered by E, U E,. Note that the edges in E, form a forest.

Let V, be the set of vertices that are notin bd(I, L --- L I,) and that are incident
with at least three edges in E,. Then the graph (V;, E, U E,) is topologically
homeomorphic to a graph H with vertex set W U ¥; and edge set E; U {gy,---» a.}
for some edges q,, ..., g, (which come from paths in E,). So each vertex in V; has
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degree at least three in H. This implies # < 2p — 3. (To see this, contract the edges
in E,, making H a tree with r edges. Let the contracted bd(I, v --- U 1) give p’
vertices. So p’ < p. Then r = p' + |V;| — 1. On the other hand, all vertices in V;
have degree at least 3. So 2r > 3|V;| + p' = 3r — 2p' + 3, implying r < 2p’' - 3 <
2p—3)

Since H is connected, each face of H is simply connected. Note that g4, ..., ¢, all
are incident (at both sides) with only one face of H, call it Fy.

We enumerate representatives for the homotopy classes containing simple I *—I ¥
curves, so that each face among I, ..., I is traversed at most once, and so that face
F, is traversed at most m:=|E(G)| nmes (homotopy in the space R*\W). This
clearly includes all homotopy classes containing a simple I-I% path in G*.

To enumerate the curves, we first decide how often it crosses each of the edges of
H. To this end, we decide, for j = 3, ..., p, whether I; is traversed or not. If we
decide I; is traversed, then we choose two edges on bd(I;) to be crossed by the
curve. Moreover, we choose one edge on bd(I,) and one edge on bd(l,) to be
crossed. These choices can be made in O(m??) ways. For each edge we decided is
crossed, we consider a “little” line segment crossing this edge.

This fixes the crossings of the curves with the edges in E,. To fix crossings with
gy ---» 4y, We choose, for each j = 1,...,r, a number «;, indicating how often edge
g; is crossed. We take 0 < a; <m. So thls choice can be made in O(m") ways. For
each j we consider «; “little” line segments crossing g;.

We take all “little” line segments pairwise disjoint. Let ¥ denote the set of all
these line segments, and let R denote the set of endpoints of these line segments (so
|R| = 2|.#]). Let R; and R/ be the sets of endpoints of these line segments crossing
q;, at the two sides of g; (see Fig. 29).

For j =1, 2 we consider a curve in I; connecting [¥ with the unique point in
RnI; Forj=3,...,pif|[RnI; = 2, weconsider a curve in [; connecting the two
points in R N I;. In face F, we connect the points in R N F, pairwise, by pairwise
disjoint curves (not crossing any line segment in &), in such a way that no two
points both in the same R} or both in the same Rj are connected. Such a
“matching” can be chosen in O(m* *“P) ways.

This bound can be seen as follows. Let 4 be the partition of R N F,, with classes
R}, R, ..., R;, R}, together with singletons for the remaining points in R N F,.
Note that |4| < 2r + 2p. For any two distinct classes y, § in € we choose a number
B,s indicating how many points in y are to be matched to points in §. We take
B,s < m, and hence the choice can be made in O(m* *#?) ways. In fact, we consider

L o——o
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only those choices for which
> Bs=1vl (7.2)
FEY

holds for each y € €. Then, for each y, 8, we know which points in y are matched to
which points in §. (This follows from the fact that F is simply connected and that
two distinct curves must be disjoint.) We only consider those choices B, for which
this matching yields pairwise noncrossing curves.

Finally, in each face F of H with F¢{I,,...,I,, Fo}, we consider pairwise
disjoint curves, pairwise connecting the points in R n F. Since |R\F,| < 4p, there
is a constant number of such choices (as p is fixed).

Now all line segments and curves chosen yield a curve C from I* to I%, together
with some (or none) closed curves. It is not difficult to replace C by a path P in G*
homotopic to C (path P need not be simple). All paths P thus generated, give our
enumeration.

Clearly, each simple I¥-I% path in G* is homotopic to at least one of these paths.

II. We now enumerate spanning trees of G, covering all equivalence classes with
respect to I,,...,I,. By the first part of this proof we can enumerate, for cacp
j=2,...,p, IT-If paths P, ..., P;y, in G* so that each simple I$-IF path is
homotopic to at least one of them (in R*\ W). .

For each choice i,,...,i, with 1 <i, <M,,..., 1 <i, <M, we can find, in
polynomial time (by Theorem 3), a tree T in G* connecting I}, ..., I} so that the
simple I¥-I¥ path in T is homotopicto Py, (j = 2,...,p), provi_ded that such a tree
exists. Choose an arbitrary spanning tree B in G not intersecting T

We prove that the spanning trees thus obtained intersect all equlva!ence c1a§ses.
Let B’ be any spanning tree in G. Then, for eachj = 2,..., p, there exists a unique
simple I%¥-I* path Q; in G* not intersecting B'. Without lqss of generz.lhty, let Q ; b:
homotopicto P;; in R*\W (j = 2, ..., p). Let T, be the unique spanning tree in G*
not intersecting B’. So the choice i, =1,...,i, =1 in.deed gives us 2 tfee T in G
connecting I%, ..., I* so that the simple I3-I} path in T is hemgtopxc to P;; in
R>*\W (j =2,...,p). Let B be the chosen spanning tree in G not intersecting T.

Then, for each u, we W, any u-w path not intersecting Q,u--r v Qp’ 15
homotopic to any u-w path not intersecting T, in R*\(; U -~ v I,). Hence B S
equivalent to B.

We finally derive:

Theorem 4. For each fixed p there exists a polynomial-time algorithm ‘{%r i;:e
disjoint trees problem (7.1) when G is planar and W, U -+ U W, can be covered by the
boundaries of p faces of G.

Proof. Let G be a planar graph, and let W,, ..., W, be subsets of V(Gg 31(; ttlta;lé
W,u---uW,ebdl;, v--- uIp)forfacesll,..‘,.IpofG. Wcma;(;a;sxinplv e
unbounded face is included in {I;, ..., [}, that Gis connected, and t ggtrag]..., e
are nonempty and pairwise disjoint. Choose w; € Wy, ..., Wy € Wy arbl y.
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We enumerate spanning trees By, ..., By of G covering all.equivalence classes
with respect to I, ..., I,. By Proposition 16, this can be done in polynomial time.
For each tree B; we do the following. For each i= 1,.. ...k and each
w e WA\ {w, let C,, be the simple w;-w path in B;. With the algorithm of Theorem

3 we solve the problem:

find: pairwise vertex-disjoint subtrees Ty, ..., T; of G so that, for each
i=1..,k and each we W\{w;}, T; contains a w;-w path (7.3)
homotopic to C;, (in R2\(I; U --- U I))).

If, for some Bj, (7.3) has a solution, it clearly is a solution to (7.1). We show that,
conversely, if (7.1) has a solution, then (7.3) has a solution for at least one B;. Let
T, ..., T, be a solution to (7.1). Extend T, U --- U T, to a spanning tree B of G.
Then B is equivalent to spanning tree B; for at least one j. Then, for this j, problem
(7.3) has a solution (namely Ty, ..., Tp). O
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